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1 Introduction

The perturbative QCD approach [1] to the calculation of hadronic cross-sections at large

momentum transfer Q is based on the Sterman-Weinberg criteria [2] of infrared and

collinear safety, combined with the factorization theorem for mass singularities [3]. A

hadronic observable is said to be infrared and collinear safe if it is insensitive to the

emission of soft momenta and to the splitting of a final-state momentum into collinear

momenta. The properties of infrared and collinear safety guarantee that the long-distance

component of the scattering process, which is controlled by non-perturbative phenomena,

is suppressed by some inverse power of Q as the hard scale Q increases. Thus, the

observable is dominated by short distances and the short-distance component, which

depends only logarithmically on Q, is computable as a power-series expansion in the

strong coupling αS(Q).

It is commonly assumed that the consequences of the Sterman-Weinberg criteria are

even wider: the power-series in αS is assumed to have coefficients that are finite order by

order in perturbation theory. Interpreted in this way, the criteria become a statement on

the infrared and collinear finiteness of the fixed-order perturbative expansion.

In this paper we would like to point out that, in general, this strong interpretation of

the criteria is not valid. In fact, the perturbative expansions of infrared- and collinear-safe

quantities can be divergent order by order in perturbation theory and these divergences

1



J
H
E
P
1
0
(
1
9
9
7
)
0
0
5

are still produced by the radiation of soft and/or collinear partons.

The presence of logarithmic singularities that spoil the convergence of the perturbative

expansion near the exclusive boundaries of the phase space of infrared- and collinear-safe

observables is well known [4] - [11]. These singularities reflect the difficulty in extending

the Sterman-Weinberg criteria towards extreme kinematical regions and, in many cases,

they can be handled by all-order resummation methods.

The main issue to be discussed in the present paper concerns a new general class of

singularities that appear inside the physical region of the phase space. They arise when-

ever the observable in question has a non-smooth behaviour in some order of perturbation

theory at an accessible point, which we shall call a critical point, inside phase space. This

can happen if the phase-space boundary for a certain number of partons lies inside that

for a larger number, or if the observable itself is defined in a non-smooth way. In either

case, if the distribution of the observable is actually discontinuous at that point in some

order, it will become infinite there to all (finite) higher orders. If it is continuous but not

smooth, i.e. if some derivatives are discontinuous, then the higher-order predictions will

become unstable, with infinite derivatives, at that point.

There are several possible reactions to this state of affairs. One can try to avoid non-

smooth observables altogether. As we shall see, this actually rules out some commonly-

used quantities. One can use such observables but avoid the phase-space regions near

critical points. In this case, one still needs some understanding of the phenomenon in

order to assess the extent of the dangerous regions. Alternatively, one can identify the

problematic terms in each order of perturbation theory and resum them to all orders. As

mentioned above, this approach has been used successfully for the treatment of singulari-

ties near the exclusive phase-space boundary in many observables. We advocate a similar

approach to the new class of singularities discussed here, although much work remains

to be done in order to reach a comparable level of understanding. As a first step in this

direction, we carry out the resummation of leading double-logarithmic terms, and show

that it leads to smooth behaviour at the critical point.

In the following Section we give a general discussion of the effects of soft and/or

collinear parton emission in fixed-order QCD perturbation theory. We first review the

cancellation mechanism which normally ensures the regularity of infrared- and collinear-

safe observables, and the way in which this breaks down at the exclusive boundary of

phase space. We then show how a similar breakdown will occur inside phase space when

the observable is defined in a non-smooth way, and describe the general form of the

resulting singularities.

In Sect. 3 we discuss in some detail two specific cases in which such singularities

actually appear. The first is the distribution of the C-parameter [12, 13], a well-known

event shape variable for e+e− annihilation final states. The physical region is 0 < C < 1,

but at the point C = 3/4 there is a divergence in the perturbative prediction of the C-

distribution at second and higher orders. The second example is taken from jet physics in

hadron-hadron collisions, and concerns the jet shape or profile function, which describes

the angular distribution of energy with respect to the jet axis [14]. Here one finds a
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critical point at the (arbitrary) boundary of the cone used to define the jets, which leads

to divergences in jet shapes and exclusive multijet cross sections at next-to-leading order

and beyond.

In Sect. 4 we discuss the resummation of these divergences to all orders. We expect on

general grounds that infrared finiteness will be restored by resummation, and we show that

this is the case for the leading double-logarithmic terms. After resummation, one obtains

a characteristic structure which is not only finite but smooth (infinitely differentiable)

at the critical point. By analogy with the characteristic Sudakov peak generated by

a similar mechanism near the exclusive phase space boundary, we call this structure a

Sudakov shoulder. We also discuss the resummation of a more general class of non-

smooth behaviours at the critical point, which give rise to different structures related to

the Sudakov shoulder.

Finally in Sect. 5 we summarize our main results and conclusions.

2 Singularities in fixed order

The singularities we are interested in are due to the radiation of soft and/or collinear

partons. In perturbative calculations, the soft and collinear regions of the phase space

lead to infrared divergences in the QCD matrix elements. In the case of infrared and

collinear safe observables the divergences cancel upon adding real and virtual contributions

but, precisely speaking, the cancellation does not necessarily take place order by order

in perturbation theory. In fact, in particular kinematic configurations real and virtual

contributions can be highly unbalanced, spoiling the cancellation mechanism.

2.1 Soft-gluon cancellation

In order to discuss this point most generally, we denote by C an infrared- and collinear-safe

observable defined in a hard-scattering process at the scale Q. We can always assume

that C is dimensionless and varies in the kinematic range 0 ≤ C ≤ 1. We denote by

σ̂(n)(C) a related cross section or distribution1 evaluated at n-th order in perturbation

theory and consider the effect of soft-gluon radiation at the next perturbative order. If

1− z denotes the fraction of the centre-of-mass energy involved in the radiative process,

virtual (v) and real (r) soft gluons affect the cross section with the following emission

probabilities:

dwv(z)

dz
= −

αS(Q)

π
δ(1− z)

∫ 1−ε

0

dz′

1− z′
ln

1

1− z′
, (2.1)

dwr(z)

dz
=

αS(Q)

π

1

1− z
ln

1

1− z
Θ(1− z − ε) . (2.2)

The expressions (2.1,2.2) are valid to double-logarithmic accuracy and arise from the

combination of the customary bremsstrahlung spectrum dω/ω with the angular distribu-

1The perturbative distribution σ̂(C) can be either a measurable quantity or a short-distance coefficient

function that appears in the factorization theorem.
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tion dθ2/θ2 for collinear radiation. Here we have introduced an unphysical cutoff ε on

the minimum energy fraction of both gluons because the probabilities in eqs. (2.1) and

(2.2) are separately divergent if the cutoff is absent. However, in the case of infrared- and

collinear-safe observables, real and virtual emissions contribute with equal weight K to

cross sections, although the actual value of the coefficient K depends on the particular

observable under study.2 Thus, adding the real and virtual terms, the physical limit ε→ 0

can be safely taken, leading to a finite differential probability:

dw(z)

dz
= K lim

ε→0

[
dwv(z)

dz
+
dwr(z)

dz

]
(2.3)

= a

(
1

1− z
ln

1

1− z

)
+
, (2.4)

where a = KαS(Q)/π and, as usual, the plus-prescription [g(z)]+ stands for∫ 1

0
dzf(z) [g(z)]+ ≡

∫ 1

0
dz [f(z)− f(1)] g(z) . (2.5)

The plus-prescription in eq. (2.4) is the result of the cancellation of the dependence

on the unphysical cutoff ε and defines a well-behaved distribution, i.e. one leading to

non-singular functions, when acting on any smooth function f(z) that is finite at z = 1.

However, this is the sole cancellation mechanism of infrared singularities that is guaran-

teed by infrared and collinear safety in fixed-order perturbation theory. The Sterman-

Weinberg criteria do not imply that the coefficients of the perturbative expansion are

non-singular functions. In fact, normally these coefficients are (or are obtained from)

singular generalized functions or distributions, like the soft-gluon probability in eq. (2.4).

Such distributions lead to finite quantities only when they are integrated with sufficiently

smooth test functions.

In particular, the (n+1)-st order cross section σ̂(n+1)(C) is obtained by combining the

soft-gluon probability with the n-th order term σ̂(n)(C) and the latter may well not be a

smooth function of C for all values of C. In this case, the real and virtual contributions are

effectively unbalanced and singularities show up in the fixed-order perturbative expansion.

In order to discuss these singularities, we have to specify how the observable C depends

on the soft-gluon energy. We consider for definiteness the case in which C increases when

soft partons are radiated in the final state. Thus, the emission of a soft gluon with energy

fraction 1− z produces a change C → C + δC, where δC = O(1− z), and, without loss

of generality, we can write the next perturbative order as follows:

σ̂(n+1)(C) =
∫ C

0
dy σ̂(n)(C − y)

(
dw(z)

dz

)
z=1−y

+ . . . , (2.6)

where the dots stand for less singular terms, if any. Because of the character of the soft-

gluon distribution dw(z)/dz, if σ̂(n) is not smooth at some point in the kinematic range

0 ≤ C ≤ 1, the integral on the right-hand side of eq. (2.6) can be divergent.

2In the case of measurable quantities, the coefficient K is typically positive definite. If instead the dis-

tribution σ̂(C) is a short-distance coefficient function, the sign of K depends strongly on the factorization

scheme used to define the parton distribution functions.
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2.2 Singularities at the exclusive boundary

The most common and extensively studied soft-gluon singularities are those arising at

an exclusive boundary of the phase space. In this kinematic regime, the radiative tail

of real emission is strongly suppressed, producing the loss of balance with the virtual

contribution. Since the observable C that we are considering increases when soft partons

are radiated, the exclusive boundary is the region C → 0. Here the non-smooth behaviour

of σ̂(n+1)(C) is simply due to the associated phase-space constraint Θ(C). Inserting

eq. (2.4) into eq. (2.6) we have:

σ̂(n+1)(C) = a

[
−

1

2
σ̂(n)(C) ln2C +

∫ C

0

dy

y
ln

1

y

(
σ̂(n)(C − y)− σ̂(n)(C)

)]
+ . . . . (2.7)

Thus, even if σ̂(n)(C) is finite3 as C → 0, the first term in the square bracket produces a

divergent contribution at the kinematical boundary:

σ̂(n+1)(C)
C → 0
∼ −

a

2
σ̂(n)(C) ln2C + . . . . (2.8)

These double-logarithmic terms are usually called soft-gluon singularities of Sudakov

type. They appear in the perturbative expansions of many e+e− shape variables in the

two-jet limit [4, 5]. The observable C, for instance, can be the C-parameter [12, 13] or

C = 1−T , where T is the thrust [15]. Similar soft-gluon effects occur in hadron collisions

for Q⊥-distributions in the Drell-Yan process (C ∼ Q⊥/Q) [6] and for the production of

systems of high mass M near threshold (1−C ∼M/
√
S, where

√
S is the centre-of-mass

energy). Outstanding examples of these systems are lepton pairs with large invariant

mass produced via the Drell-Yan mechanism [7], the hadronic final state in deep-inelastic

lepton-hadron scattering [8], heavy quark-antiquark pairs [9, 10, 11] and pairs of jets at

large transverse momentum [11].

2.3 Singularities inside the physical region

Another possible source of soft-gluon singularities, which has received less attention in

the literature, arises when σ̂(n)(C) has non-smooth behaviour at a certain value C = C0

inside the physical region of phase space. This can happen if the phase-space boundary

for a certain number of partons lies inside that for a larger number, or if the observable

C is defined in a non-smooth way. We discuss examples of both types below.

The diagnosis of singularities inside the physical region is physically less obvious than

that for singularities at the phase-space boundary. At the exclusive boundary we are

dealing with a multi-scale process: besides the hard scale Q, there is also another natural

scale, the inelasticity scale Q′ ∼ CQ, that plays a relevant role. The Sudakov singularities

in eq. (2.8) follow from the large mismatch between these two scales, Q′ � Q when

C → 0. For singularities inside the physical region, on the other hand, the lack of

3If σ̂(n)(C) is divergent at C = 0, the double-logarithmic singularity in eq. (2.8) is enhanced and can

also be non-integrable.
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balance between real and virtual contributions is just produced by the sharpness of the

distribution around the critical point C0, and the actual identification of a critical point

requires careful analysis of the kinematics and dynamics.

To show how these singularities arise, we denote the cross section for C < C0 by σ̂−(C)

and that for C > C0 by σ̂+(C), and we can suppose that at the n-th order both σ̂
(n)
− and

σ̂
(n)
+ are infinitely differentiable functions. Then we find from eq. (2.7) that σ̂

(n+1)
− (C) is

infinitely differentiable and regular at C = C0 while σ̂
(n+1)
+ (C) can be singular there. The

difference comes from the second term in the square bracket of eq. (2.7) and is given by

σ̂
(n+1)
+ (C)− σ̂(n+1)

− (C0) = −
a

2
ln2(C − C0)

{[
σ̂

(n)
+ (C0)− σ̂

(n)
− (C0)

]
+ (C − C0)

[
σ̂

(n) ′
+ (C0)− σ̂

(n) ′
− (C0)

]
+ . . .

}
+ . . . , (2.9)

where σ̂
(n) ′
− (C) denotes the first derivative of the distribution with respect to C and the

dots indicate terms that are less singular as C → C0. Thus if σ̂
(n)
+ (C0) 6= σ̂

(n)
− (C0), i.e.

σ̂(n)(C) has a step at C = C0, then σ̂
(n+1)
+ (C) has a double-logarithmic divergence at that

point. The same mechanism leading to eq. (2.9) will enhance the double-logarithmic

singularity by further integer powers of ln(C − C0) in yet higher orders.4

In general, a step at some point C = C0 inside the physical region at the n-th order of

perturbation theory always generates more and more divergent contributions at C = C0 in

higher and higher orders. To any fixed order m > n, the cross section σ̂
(m)
+ (C0) is infinite,

because the emission of arbitrarily soft gluons is not cancelled by virtual corrections

at that point. One may regard this as a failure of the Sterman-Weinberg criteria for

infrared and collinear finiteness in fixed-order perturbation theory: we have considered

an observable which satisfies the criteria, but nevertheless the perturbative prediction at

a point inside the physical phase-space is divergent.

One might think that the construction of an infrared and collinear safe quantity, which

at the n-th perturbative order has a step-like behaviour inside the physical region, is quite

abstract. In fact, this can happen if, due to the finite number of partons involved in the

calculation at that order, they can occupy the phase-space region only up to a value

C = C0 that is smaller than the maximum value permitted by kinematics. To produce

a step it is sufficient that the computed distribution does not vanish at C = C0. As we

shall see in Sect. 3, the distribution of the C-parameter in e+e− annihilation has these

features.

A similar behaviour can occur if the infrared and collinear safe observable C is used

to classify the topology of hadronic events. In this case sharp structures can easily be

produced. For instance, C can be a jet resolution parameter that is defined in a non-

smooth way (e.g. it can have a non-trivial and non-smooth dependence on energies and

angles of partons). Then the topology of the (partonic) event, e.g. the number of jets,

can suddenly change at a certain value C0. At that point the rate σ̂(n)(C) for producing a

fixed number of jets can have a step. Moreover, a corresponding step, with the opposite

discontinuity, will appear in the production rate relating to a different number of jets.

4Note that all these singularities are integrable in a neighbourhood of the critical point.
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At the next perturbative order, the step in σ̂(n)(C) leads to a singularity for C > C0

and, by the same argument as in eq. (2.9), the step in the other jet rate leads to a

similar singularity for C < C0. Since the sum of the two jet rates remains finite, both

of them will show a logarithmic divergence on both sides of the step, that is, above and

below the critical point C = C0. This may appear in contradiction with the statement

above eq. (2.9). However, since we are considering a variable C that is defined in a

non-smooth way, it is not monotonic with respect to soft-gluon energies. Therefore, the

simple formula in eq. (2.6) cannot be applied, although the general relation between

steps and singularities is still valid. A phenomenologically-relevant example of this kind

of singularity is also considered in Sect. 3.

The result in eq. (2.9) also allows us to discuss the effect of soft-gluon radiation on

non-smooth quantities when they do not have a step-like behaviour. For example, the

n-th-order distribution σ̂(n)(C) may be continuous but not its first derivative (σ̂
(n) ′
+ (C0) 6=

σ̂
(n) ′
− (C0)), so that σ̂(n)(C) has a sharp edge at C = C0. An example would be C = 1− T

where T is the e+e− thrust variable, which has kinematic range 1
2 ≤ T ≤ 1 but is zero in

first order (n = 1) for T < 2
3 and vanishes linearly as T → T0 = 2

3

+
. Then σ̂(n+1)(C) is also

continuous but has a cusp at C = C0, where σ̂
(n+1) ′
+ (C) diverges double-logarithmically.5

In the case of C = 1 − T , from eq. (2.9) we obtain that σ̂
(2) ′
+ (C) diverges to negative

infinity6 at C0 = 1 − T0 = 1
3 . In higher orders σ̂(C) remains continuous but the degree

of divergence of its derivative is enhanced by an increasing number of double logs, so the

edge gets more and more like a step order by order in perturbation theory.

An edge at a certain order thus does not produce divergences in the perturbative

expansion. Nonetheless, fixed-order predictions are likely to be unreliable near the critical

point because the shape of the distribution, independently of its magnitude, is highly

unstable with respect to radiative corrections. For instance, if σ̂(n)(C) is decreasing at

the edge and the perturbative coefficient a in eq. (2.9) is positive, the cusp at the next

order leads to an increasing distribution for C ≥ C0.

3 Examples

Here we illustrate the above general discussion with two specific examples of distributions

of well-known observables which do develop divergences at points inside the physical phase

space, due to imperfect cancellation between real and virtual soft-gluon singularities.

3.1 The C-parameter in e+e� annihilation

The C-parameter is an infrared- and collinear-safe observable that was introduced in

Refs. [12] to describe the shape of hadronic events produced by e+e− annihilation. De-

noting by pαi the components of the three-momentum of any final-state particle i, one

5In general, if σ̂(n) is continuous up to its k-th derivative, the double-logarithmic singularity affects

the k-th derivative of σ̂(n+1).
6This cusp is visible in Fig. 1 of Ref. [16].

7



J
H
E
P
1
0
(
1
9
9
7
)
0
0
5

first considers the linearized momentum tensor

Θαβ =

∑
i p

α
i p

β
i /|pi|∑

j |pj|
, (3.1)

and computes its eigenvalues λi. The C-parameter is then defined as follows

C = 3 (λ1λ2 + λ2λ3 + λ3λ1) . (3.2)

By definition the eigenvalues satisfy the following constraints

0 ≤ λi ≤ 1 ,
∑
i

λi = 1 , (3.3)

so that the C-parameter varies in the kinematic range 0 ≤ C ≤ 1. In particular, C = 0 for

a perfectly two-jet-like final state (e.g. λ2 = λ3 = 0, λ1 = 1) and C = 1 for an isotropic

and acoplanar distribution of final-state momenta (λ1 = λ2 = λ3 = 1
3).

In fact, the maximal value C = 1 can only be achieved when there are four or more

final-state particles. Planar events have one vanishing eigenvalue and occupy the kine-

matic region C ≤ 3
4 . Hence, we are in a situation where the phase-space boundary for

three particles is below the kinematic limit of the shape variable. For a general three-

particle state

C = C3(x1, x2) = 6(1− x1)(1− x2)(1− x3)/(x1x2x3), (3.4)

where xi = 2pi · Q/Q2 are the centre-of-mass energy fractions (x1 + x2 + x3 = 2). The

maximum value C = 3
4 for three particles corresponds to the symmetric configuration

x1 = x2 = x3 = 2
3 .

In perturbation theory, the distribution of the C-parameter for C 6= 0 has the general

form
1

σ0

dσ

dC
= ᾱSA(C) + ᾱ2

SB(C) +O(α3
S) , (3.5)

where ᾱS = αS(Q)/2π and we normalize to the Born cross section σ0, as was done in

Ref. [17]. The two functions A(C) and B(C) can be identified respectively with the

distributions σ̂(n) and σ̂(n+1) of Sect. 2. In particular, we are exactly in the situation

where eq. (2.6) applies because, as can be checked easily, the C-parameter increases when

additional soft particles are produced.

The first-order distribution A(C) is given by the qq̄g final state:

A(C) =
∫ 1

0
dx1dx2 Θ(x1 + x2 − 1)M(x1, x2) δ[C − C3(x1, x2)], (3.6)

where

M(x1, x2) = CF
x2

1 + x2
2

(1− x1)(1− x2)
. (3.7)

Note that the matrix element (3.7) has a finite value M0 = M(x1 = x2 = 2
3) = 8CF

in the symmetric configuration where C = 3
4 . Furthermore one finds that the available
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phase-space remains finite as C → 3
4

−
. Therefore, the O(αS) distribution (3.6) has a

step7 at the three-parton upper limit C = 3
4 :

A(C)
C ∼ 3/4
' A(3

4) Θ(3
4 − C) , (3.8)

A(3
4) =

32

243
π
√

3 M0 =
256

243
π
√

3CF . (3.9)

The derivative of A(C) is also finite at C = 3
4

−
, in fact

A′(3
4) = −

8

3
A(3

4) . (3.10)

The resulting first-order prediction in the vicinity of C = 3
4 is shown by the dashed curve

in Fig. 1.

Figure 1: Predictions of the C-parameter distribution for αS = 0.12. Dashed: O(αS).

Solid: O(α2
S). Dotted: resummed.

According to Sect. 2, the second-order contributionB(C) should be smooth as C → 3
4

−

but should have a double-logarithmic singularity as C → 3
4

+
. This is indeed the case, as

shown by the solid curve in Fig. 1. Denoting B(C) above/below C = 3
4 by B±(C) we find

using the Monte Carlo matrix element evaluation program EVENT [17]

B−(3
4) = 230± 10 . (3.11)

7Note that, consistently with the general discussion in Sect. 2, the first-order distribution A(C) in

eq. (3.6) diverges at the exclusive boundary C = 0 of the phase space. This divergence and the corre-

sponding ones in higher orders can be resummed [13] using the techniques of Ref. [4].
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Performing the analytic calculation for C → 3
4

+
, we find

B+(C) ' A(3
4)
[
(2CF + CA)(1− δ) ln2 δ + (3CF + 11

6 CA −
1
3Nf) ln δ

]
+ h(C), (3.12)

where

δ =
8

3

(
C −

3

4

)
(3.13)

and the remainder is expected to take the form

h(C) = h(3
4) +O(δ ln δ) . (3.14)

Using eq. (3.10), we see that the first term in the square bracket on the right-hand side

of eq. (3.12) is in complete agreement with eq. (2.9) with a = (2CF + CA)αS(Q)/π.

The second term in the square bracket is due to collinear but non-soft parton splitting:

single-logarithmic contributions of this type were neglected in the simplified discussion of

Sect. 2, which was valid to double-logarithmic (DL) accuracy only.

Figure 2: Second-order prediction of the C-parameter distribution for C → 3
4

+
. Points:

EVENT Monte Carlo. Curve: eqs. (3.12 – 3.15).

Comparing our analytic calculation with numerical data from EVENT [17], we find

good agreement, as shown in Fig. 2. The value of the constant h(3
4) in eq. (3.14) is found

to be

h(3
4) = 146± 3 . (3.15)

3.2 Jet shapes in hadron collisions

As our second example we study the angular distribution of transverse energy (ET ) in

jets produced at high ET in hadron-hadron collisions [14]. Here it is customary to define
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a jet by a cone algorithm [18], that is, by maximizing ET with respect to the direction

of a cone of opening angle R in pseudorapidity, azimuth (η, φ) space. The cone axis then

defines the jet axis (ηJ , φJ). Alternatively a k⊥-clustering algorithm can be used [19]. In

this case again a parameter R can be introduced, effectively representing the jet cone size

[20].

Several different versions of the cone algorithm are actually used both in theoretical

calculations and in experimental analyses. They differ with regard to minor details and

sometimes major points. The latter are related to infrared and collinear safety. In some

versions [21], the direction of the unassigned cluster (parton) with the highest ET is used

to start the clustering procedure. Since the highest-ET parton is not stable with respect

to collinear splitting, these algorithms are collinear unsafe. Their unsafeness certainly

affects any perturbative calculation that involves more than 5 partons in the final state.

Collinear safety is fulfilled by iterative-cone algorithms that use all clusters, possibly

excluding those with ET below a fixed threshold value [22], as seed directions of the

cone. Nonetheless, these algorithms are still infrared unsafe in the absence of an ET -

threshold [23], and therefore strongly affected by the threshold when one is applied [24].

In iterative-cone algorithms, infrared and collinear safety can be achieved [25] by using

the ET -weighted midpoints of all pairs of jets (partons) as additional seed directions. In

the following, by ‘cone algorithm’ we refer to these improved versions.

We consider here the differential jet shape or profile function ψ(r), defined such that

ψ(r) dr is the fraction of transverse energy lying within a ring of radius r, width dr,

centred on the jet axis. We have

ψ(r) =

∑
i ET i δ(r −RiJ )∑
k ETkΘ(R− RkJ)

, (3.16)

where

RiJ ≡
√

(ηi − ηJ)2 + (φi − φJ)2 (3.17)

and the sums over i, k can be over either all particles or only those particles assigned to

the jet. The function ψ(r) has been studied in detail in Ref. [24], and many of the points

we make are also discussed there.

For r > 0, ψ(r) starts at order αS and at this order its r-dependence is due to 3-parton

final-states. Let us simplify the discussion by considering a cone size R < π/3 and three

partons of momenta p1, p2, p3 with transverse-energy ordering, e.g. ET1 > ET2 > ET3. In

this case there are two possible jet configurations:

a) jets = {1}, {2}, {3} if Ralg
23 > R

b) jets = {1}, {23} if Ralg
23 < R

where Ralg
23 depends on the jet-algorithm:

Rcone
23 =

ET2

ET2 + ET3
R23 , Rk⊥

23 = R23 . (3.18)

The jet shape ψ(r) can be written in terms of two contributions ψin(r) and ψout(r), arising

from particles assigned and not assigned to the jet, respectively. To order αS, the two
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contributions are proportional to the following expressions

ψ
(1)
in (r) ∝ Θ(R−Ralg

23 ) δ(J − {23})×

×
[
ET2 δ

(
r −

ET3

ET2 + ET3
R23

)
+ ET3 δ

(
r −

ET2

ET2 + ET3
R23

)]
, (3.19)

ψ
(1)
out(r) ∝ Θ(Ralg

23 −R) [δ(J − {2}) ET3 + δ(J − {3}) ET2] δ(r −R23), (3.20)

where we use the notation

δ(J − {2}) ≡ δ(ETJ −ET2) δ(ηJ − η2) δ(φJ − φ2) (3.21)

and likewise for δ(J−{3}) and δ(J−{23}). Equations (3.19) and (3.20) show that ψ
(1)
in (r)

and ψ
(1)
out(r) are respectively proportional to Θ(R− r) and Θ(r−R), and when r → R we

have

ψ
(1)
in (r) → ψ

(1)
in (R) > 0 , ψ

(1)
out(r)→ 0 , (cone alg.) (3.22)

ψ
(1)
in (r) → 0 , ψ

(1)
out(r)→ ψ

(1)
out(R) > 0 (k⊥ alg.). (3.23)

In conclusion, ψ(1)(r) in the cone algorithm has a step at r = R, while in the k⊥ algorithm

it has an edge (step) if only particles assigned to the jet (all particles) are considered.

Let us now investigate possible singularities at the next order. Since ψ(2)(r) ∝
∑
iET i

δ(r − RiJ), we should consider how the angular distance between the jet direction and

that of parton i is affected by collinear splitting and soft gluon radiation. In the case of

collinear splitting the angular distance does not change. Thus we have to examine soft-

gluon radiation with energy fraction 1 − z and single-logarithmic emission probability
dw(z)
dz

= a
(

1
1−z

)
+
.

In the cone algorithm, RiJ is always smaller than R if i belongs to the jet and always

larger than R if it does not. If i belongs to the jet and a soft gluon is emitted inside

the cone, cancellation of real and virtual divergences will occur as usual, leading to a

smooth contribution to ψ
(2)
in . However, if the gluon is emitted outside the cone there

is a mismatch of real and virtual contributions, which will generate a divergence at the

boundary of the cone. The corresponding change in RiJ is −c(1−z), where c > 0 depends

on the kinematics. Similarly, if parton i is outside the jet and a gluon is emitted into the

cone, the shift in RiJ is +c(1− z). Thus, according to our general discussion in Sect. 2,

we find

ψ
(2)
in (r) ' Θ(R− r)

{
−a ψ(1)

in (R) ln
1

R − r
+ const.

}
ψ

(2)
out(r) ' Θ(r − R) const. (3.24)

The coefficient a is likely to be positive in most jet configurations so that ψ(2)(r) diverges

to −∞ when r → R from below and stays finite when r → R from above.

In the k⊥ algorithm at higher orders, because of the iterative recombination procedure,

RiJ can be either larger or smaller than R, independently of whether i is or is not a particle

12
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in the jet. Thus both ψ
(2)
in (r) and ψ

(2)
out(r) are non-vanishing in a neighbourhood of r = R.

Moreover, RiJ does not vary monotonically with z when a soft gluon is added to the jet.

Thus we find that ψ
(2)
in (r) has a cusp at r = R and ψ

(2)
out(r) has the following double-sided

singular behaviour8:

ψ
(2)
out(r) ' a

{
Θ(R− r) ψ(1)

out(R) ln
1

R− r
−Θ(r −R) ψ

(1)
out(R) ln

1

r − R
+ const.

}
.

(3.25)

The double-sided singularity follows from our general discussion in Sect. 2 on non-mono-

tonic observables with stepwise behaviour at lower order.

Note that the singularities in eqs. (3.24) and (3.25) are both single-logarithmic. This

is because they are due to soft but non-collinear radiation.

Related problems connected with the calculation of jet cross sections in higher orders

have been discussed in Ref. [23]. The definitions of the fixed-cone and iterative-cone

algorithms given there are actually unsafe beyond a certain order. More precisely, since

the highest unassigned ET -cluster (parton) is used to start the clustering procedure,

these algorithms are collinear unsafe. For a cone size R < π/3, their unsafeness affects

perturbative calculations that involves more than 5 final-state partons. Thus one may

still perform calculations up to order α4
S using these definitions, provided that divergences

at critical points are carefully handled.

Consider the 3-jet cross section in the iterative cone algorithm as defined in Ref. [23]

at a fixed value of R23, the angular distance between the two less energetic jets. At LO

this cross section has a step at the critical point R23 = R, the cone radius. Actually it

vanishes for R23 < R and is finite and not vanishing for R23 > R. At NLO the emission

of a soft gluon at a large angle produces a single-logarithmic divergence (the soft gluon

not being collinear) at R23 = R, of the type discussed above.

This divergence is integrable and it does not produce any singularity in the cross

section integrated over R23. On the other hand, if the phase-space slicing method [26]

is used to perform the calculation, the integrable divergence can give rise to a ln smin

dependence, where smin is the ‘slicing parameter’ used for the numerical evaluation of the

cross section. Such a dependence can be numerically important, even though it should

disappear for sufficiently small values of smin.

To illustrate this point we note that the cutoff ε introduced in Sect. 2 to define the

plus-distribution is somewhat analogous to a slicing parameter. In the case of a stepwise

behaviour of σ̂(n) at C = C0, the integral up to C1 > C0

lim
ε→0

∫ C1

C0

dC σ̂(n+1)(C; ε) , (3.26)

is in fact finite, but if we keep ε fixed we get for C1 − C0 < ε

∫ C1

C0

dC σ̂(n+1)(C; ε) = a

[
−

1

2
ln2 ε

∫ C1

C0

dCσ̂
(n)
+ (C) + const. +O(ε ln ε)

]
, (3.27)

8Assuming a > 0, this agrees with the results of Ref. [24].
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which shows an unphysical dependence on ln ε. The unphysical logarithmic dependence

does not cancel as long as ε is not sufficiently small.

4 Resummation and the Sudakov shoulder

Although we have shown that divergent fixed-order predictions will generally arise at non-

smooth points inside the physical region, one might feel that this is a purely academic

difficulty, since the divergence at such a point C = C0 is integrable, as long as σ̂(n)(C)

itself is integrable in a neighbourhood of that point. The cancellation of real and virtual

divergences will therefore take place in the presence of smearing in C, as would be expected

from non-perturbative (hadronization) effects. However, the resulting prediction will be

highly unstable with respect to the order at which we stop the perturbative calculation

and the amount of smearing introduced.

In particular, since the hadronization smearing should cancel divergent terms pro-

portional to some power of αS(Q), this would imply that non-perturbative effects scale

logarithmically with Q, thus spoiling not only the finiteness but also the safety of the

Sterman-Weinberg criteria. We should then be forced to conclude that some infrared-

and collinear-safe observables are affected by non-perturbative contributions that are not

power suppressed.

Alternatively, one might think that the divergence in the fixed-order prediction can be

cancelled by the resummation of still higher-order perturbative corrections. One might

argue that the resummation of real and virtual terms produces a Sudakov suppression of

the divergence, similarly to the Sudakov suppression of many observables at the exclusive

boundary of the phase space [4, 5, 6]. This scenario would lead to a resummed prediction

that, at the critical point C = C0, is finite but still has a stepwise behaviour. On physical

grounds we do not anticipate this behaviour, and we should expect non-perturbative

effects to fill up the gap between the two sides of the step. Since the gap is produced in

perturbation theory, in this case also the necessary non-perturbative contributions could

not be power suppressed.

We believe that instead the problem of divergences inside the physical region has a

satisfactory solution entirely within the context of perturbation theory. Namely, the re-

summation of the soft-gluon contributions to all orders, rather than producing a Sudakov

suppression of the divergences, leads to a structure that is continuous and smooth, indeed

infinitely differentiable, at C = C0. We call this structure a Sudakov shoulder. The exis-

tence of a Sudakov shoulder implies the restoration of validity of the Sterman-Weinberg

criteria at infinite order in perturbation theory.

To demonstrate this point we first recall how soft-gluon resummation produces the

Sudakov form factor at the exclusive boundary of the phase space. We thus consider the

case in which σ̂(C) is a measurable quantity (with a positive soft-gluon coefficient a) and

proceed to the iterative application of eq. (2.7), retaining for simplicity only the double-

logarithmic (DL) contribution at each order. Taking into account the symmetrization with

respect to exchange of soft gluons, we obtain an exponential series that, after summation
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in the neighborhood of the point C = 0, gives

σ̂(∞)(C)
C → 0
= exp

{
−
a

2
ln2C

}
σ̂(n0)(C) , (4.1)

where n0 represents the lowest perturbative order for our observable. The exponential

term on the right-hand side of eq. (4.1) is the customary Sudakov form factor, which

suppresses the observable at the exclusive boundary.

The analogous iterative procedure in the region C ∼ C0 also leads to an exponential

series which can be summed to give

σ̂
(∞)
+ (C)− σ̂(∞)

− (C0) = exp
{
−
a

2
ln2(C − C0)

} [
σ̂

(n0)
+ (C0)− σ̂

(n0)
− (C0)

]
, (4.2)

where n0 represents the order at which the step at C = C0 first appears. Now we may

assume that σ̂
(∞)
− (C0) has no soft-gluon singularities, since by hypothesis C is always

increased by soft gluon emission. It then follows from eq. (4.2) that after resummation

the cross section is finite, continuous and infinitely differentiable at C = C0. Rather than

suppressing the divergence at C > C0, Sudakov resummation leads to the suppression of

the step. The general form of the resummed cross section will be a smooth extrapolation

from σ̂
(∞)
− (C0) into the region C > C0, joining smoothly with the different asymptotic

behaviour of σ̂
(∞)
+ (C) well above C = C0. This is the characteristic structure we call a

Sudakov shoulder.

The dotted curve in Fig. 1 illustrates the Sudakov shoulder in the case of the C-

parameter distribution. Here we simplify the treatment of the region C > 3
4 not only by

using the DL approximation for the form factor but also by approximating the lowest-

order contribution A(C) in eq. (3.6) by a step function, A(C) ' A(3
4)Θ(3

4 −C). We then

obtain

1

σ

dσ

dC
' ᾱSA(3

4)
{
Θ(3

4 − C) + Θ(C − 3
4)
(
1− exp

[
−2A(1)ᾱS ln2(C − 3

4)
])}

(DL) , (4.3)

where

A(1) = CF + 1
2CA . (4.4)

Expanding the right-hand side of eq. (4.3) perturbatively, one finds a series of logarithmi-

cally divergent (although integrable) terms for C → 3
4

+
. The summation of these terms to

all orders leads to a finite result and the lowest-order step-like behaviour is smoothed. The

resummed expression (4.3) shows a shoulder that extends beyond the value C = 3
4 . The

shoulder becomes less steep with increasing A(1) or αS. Since A(1) = CF + CA/2 ∼ 2CF ,

in an abelian theory (i.e., setting CA = 0) the DL shoulder would be twice as steep as

in QCD. The additional broadening in the QCD case is due to the fragmentation of the

gluon jet. Note that the shoulder is nevertheless still quite sharp on the scale shown in

Fig. 1.

Soft-gluon resummation will smooth out perturbative predictions of infrared- and

collinear-safe observables at other types of critical points inside phase space. After the

case of a step, the next simplest example is that of a critical point C = C0 with an edge at
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a given perturbative order n0. The resummed behaviour at this point is easily obtained by

noting that the first derivative σ̂′(C) of the corresponding distribution is a safe quantity

that has precisely a step at order n0. Thus we can apply to σ̂′(C) a DL resummation

analogous to that carried out in eq. (4.2), to obtain the following distribution

σ̂
(∞)
+ (C) = σ̂

(∞)
− (C0) + (C − C0)σ̂

(∞) ′
− (C0) +

[
σ̂

(n0) ′
+ (C0)− σ̂

(n0) ′
− (C0)

] ∫ C−C0

0
dxe−

a
2

ln2 x .

(4.5)

The first two terms on the right-hand side extrapolate σ̂
(∞)
− (C) linearly into the region

above the critical point C = C0 and the last term bends this linear extrapolation smoothly,

in proportion to the sharpness of the lower-order edge.

The resummation of double-sided singularities of the type encountered in jet profiles is

technically more complicated. It leads to a smooth “jump” structure obtained by smearing

(convoluting) two Sudakov shoulders: a shoulder above and an inverted shoulder below

the critical point, or vice versa. As a result, the two sides of the lower-order step match

with some intermediate value at the critical point in the all-order distribution and the

step is smoothed. An example of this resummation carried out numerically for the jet

shape ψ(r) is presented in Ref. [24] (cf. Fig. 11). In general, the derivation of resummed

expressions in analytic form is quite difficult and not always feasible. This is because the

type of smearing (convolution) to be applied to the two shoulders is strongly dependent

on the detailed kinematics. In the presence of double-sided singularities, the kinematics

is usually very involved since it is responsible for the non-monotonic behaviour of the

observable with respect to variations of particle angles and energies.

5 Discussion and conclusions

In this paper we have discussed in rather general terms the divergences which can arise

inside the physical region in infrared- and collinear-safe quantities computed to any fixed

order in perturbation theory. We have also given specific examples of widely-used quan-

tities in e+e− and hadron-hadron physics for which these problems actually arise. The

divergences correspond to integrable singularities and therefore they could in principle

be removed by non-perturbative smearing effects. However, this would require non-

perturbative contributions that are not power-suppressed at high energies.

We have argued that instead the remedy for these problems lies entirely within per-

turbation theory: the resummation of soft-gluon contributions to all orders should be

sufficient to render any safe quantity finite and smooth throughout the physical phase

space. Despite the violation of finiteness of fixed-order calculations, perturbative resum-

mation suggests that non-perturbative effects are still power-suppressed in infrared- and

collinear-safe observables.

A resummation of double-logarithmic terms was performed to illustrates how this

works in the case of the e+e− C-parameter distribution (Fig. 1). More work remains to be

done in order to resum single-logarithmic terms and the type of double-sided singularities

encountered in hadronic-jet profiles.
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The issues we have discussed are of some importance for QCD phenomenology. Before

using any “safe” observable to test the theory or to measure αS, one needs to identify the

critical points of that observable and the expected behaviour in whatever order of pertur-

bation theory is to be used. These points will need to be avoided in comparisons between

fixed-order predictions and experiment. On the other hand, if resummed predictions can

be obtained to single-logarithmic precision, then the behaviour at critical points can be

used to provide interesting new tests of QCD, as was the case for resummation near the

exclusive phase-space boundary [4, 5].

Acknowledgments

We are grateful for helpful discussions on this topic with M.H. Seymour, and for corre-

spondence with W.T. Giele.

This research was supported in part by the U.K. Particle Physics and Astronomy

Research Council and by the EC Programme “Human Capital and Mobility”, Network

“Physics at High Energy Colliders”, contract CHRX-CT93-0357 (DG 12 COMA).

References

[1] See, for instance:

A. Bassetto, M. Ciafaloni and G. Marchesini, Phys. Rep. 100 (1983) 201;

Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller and S.I. Troyan, Basics of Perturbative

QCD, Editions Frontieres, Paris 1991;

R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cambridge

Univ. Press, Cambridge 1996.

[2] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436.

[3] J.C. Collins, D.E. Soper and G. Sterman, in Perturbative Quantum Chromodynamics,

A.H. Mueller (ed.), World Scientific, Singapore 1989, p. 1 and references therein.

[4] S. Catani, G. Turnock, B.R. Webber and L. Trentadue, Nucl. Phys. B 407 (1993)

3.

[5] S. Catani, G. Turnock, B.R. Webber and L. Trentadue, Phys. Lett. B 263 (1991)

491;

S. Catani, G. Turnock, B.R. Webber, Phys. Lett. B 272 (1991) 368, Phys. Lett. B

295 (1992) 269.

[6] J. Kodaira and L. Trentadue, Phys. Lett. B 112 (1982) 66, Phys. Lett. B 123

(1982) 335;

C.T.H. Davies, W.J. Stirling and B.R. Webber, Nucl. Phys. B 256 (1985) 413;

J.C. Collins, D.E. Soper and G. Sterman, Nucl. Phys. B 250 (1985) 199.

17

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC%2C100%2C201
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C39%2C1436
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB407%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB407%2C3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB263%2C491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB263%2C491
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB272%2C368
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB295%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB295%2C269
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB112%2C66
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB123%2C335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB123%2C335
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB256%2C413
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB250%2C199


J
H
E
P
1
0
(
1
9
9
7
)
0
0
5

[7] G. Sterman, Nucl. Phys. B 281 (1987) 310;

S. Catani and L. Trentadue, Nucl. Phys. B 327 (1989) 323, Nucl. Phys. B 353

(1991) 183.

[8] S. Catani, G. Marchesini and B.R. Webber, Nucl. Phys. B 349 (1991) 635.

[9] E. Laenen, J. Smith and W.L. van Neerven, Nucl. Phys. B 369 (1992) 543;

[10] E.L. Berger and H. Contopanagos, Phys. Rev. D 54 (1996) 3085.

[11] S. Catani, M.L. Mangano, P. Nason and L. Trentadue, Nucl. Phys. B 478 (1996)

273.

[12] G. Parisi, Phys. Lett. B 74 (1978) 65;

J.F. Donoghue, F.E. Low and S.Y. Pi, Phys. Rev. D 20 (1979) 2759;

R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B 178 (1981) 421.

[13] S. Catani and B.R. Webber, Cavendish–HEP–97/16, in preparation.

[14] CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 70 (1993) 713;

D0 Collaboration, S. Abachi et al., Phys. Lett. B 357 (1995) 500.

[15] E. Farhi, Phys. Rev. Lett. 39 (1977) 1587.

[16] S. Catani and M.H. Seymour, Phys. Lett. B 378 (1996) 287.

[17] Z. Kunszt, P. Nason, G. Marchesini and B.R. Webber, in Z Physics at LEP 1, CERN

89-08, vol. 1, p. 373.

[18] S.D. Ellis et al., in Research Directions for the Decade, Snowmass 1990, E.L. Berger

(ed.), World Scientific, Singapore 1992, p. 134.

[19] S. Catani, Yu.L. Dokshitzer, M.H. Seymour and B.R. Webber, Nucl. Phys. B 406

(1993) 187.

[20] S.D. Ellis and D.E. Soper, Phys. Rev. D 48 (1993) 3160.

[21] UA2 Collaboration, J. Alitti et al., Phys. Lett. B 257 (1991) 232.

[22] CDF Collaboration, F. Abe et al., Phys. Rev. D 45 (1992) 1448;

D0 Collaboration, S. Abachi et al., Phys. Rev. D 53 (1996) 6000.

[23] W.B. Kilgore and W.T. Giele, Phys. Rev. D 55 (1997) 7183;

W.B. Kilgore, Fermilab-Conf-97/141-T, hep-ph/9705384.

[24] M.H. Seymour, RAL-97-026, hep-ph/9707338.

[25] S.D. Ellis, Z. Kunszt and D.E. Soper, Phys. Rev. D 62 (1989) 726.

[26] H. Baer, J. Ohnemus and J.F. Owens, Phys. Rev. D 40 (1989) 2844.

18

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB281%2C310
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB327%2C323
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB353%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB353%2C183
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB349%2C635
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB369%2C543
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD54%2C3085
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB478%2C273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB478%2C273
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB74%2C65
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD20%2C2759
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB178%2C421
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C70%2C713
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB357%2C500
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA%2C39%2C1587
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB378%2C287
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA%2CB406%2C187
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD48%2C3160
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA%2CB257%2C232
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD45%2C1448
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD53%2C6000
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD55%2C7183
http://xxx.lanl.gov/abs/hep-ph/9705384
http://xxx.lanl.gov/abs/hep-ph/9707338
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD62%2C726
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD40%2C2844

